Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex.
نویسندگان
چکیده
Cortical spreading depression (CSD) is thought to play an important role in different pathological conditions of the human brain. Here we investigated the interaction between CSD and Ca2+ waves within the astrocyte population in slices from mouse neocortex (postnatal days 10-14). After local KCl ejection as a trigger for CSD, we recorded the propagation of Ca2+ increases within a large population of identified astrocytes in synchrony with CSD measured as intrinsic optical signal (IOS) or negative DC-potential shift. The two events spread with 39.2 +/- 3.3 mum/sec until the IOS and negative DC-potential shift decayed after approximately 1 mm. However, the astrocyte Ca2+ wave continued to propagate for up to another 500 microm but with a reduced speed of 18.3 +/- 2.5 microm/sec that is also typical for glial Ca2+ waves in white matter or culture. While blocking CSD using MK-801 (40 microm), an NMDA-receptor antagonist, the astrocyte Ca2+ wave persisted with a reduced speed (13.2 +/- 1.5 microm/sec). The specific gap junction blocker carbenoxolon (100 microm) did not prevent CSD but decelerated the speed (2.9 +/- 0.9 microm/sec) of the astrocyte Ca2+ wave in the periphery of CSD. We also found that interfering with intracellular astrocytic Ca2+ signaling by depletion of internal Ca2+ stores does not affect the spread of the IOS. We conclude that CSD determines the velocity of an accompanying astrocytic Ca2+ response, but the astrocyte Ca2+ wave penetrates a larger territory and by this represents a self-reliant phenomenon with a different mechanism of propagation.
منابع مشابه
Modeling the Contributions of Ca2+ Flows to Spontaneous Ca2+ Oscillations and Cortical Spreading Depression-Triggered Ca2+ Waves in Astrocyte Networks
Astrocytes participate in brain functions through Ca(2+) signals, including Ca(2+) waves and Ca(2+) oscillations. Currently the mechanisms of Ca(2+) signals in astrocytes are not fully clear. Here, we present a computational model to specify the relative contributions of different Ca(2+) flows between the extracellular space, the cytoplasm and the endoplasmic reticulum of astrocytes to the gene...
متن کاملModulatory Effects of Dopamine D2 Receptors on Spreading Depression in Rat Somatosensory Neocortex
Introduction: Spreading depression (SD) is a propagating wave of depolarization followed by depression of the neuroglial activities and can modulate extracellular dopamine concentrations in the neocortex. It has been shown that the dopaminergic system plays a role in migraine. SD has been suggested as a critical phenomenon in the pathophysiology of migraine. The aim of this study was to investi...
متن کاملThe Bimodal Nature of Neurovascular Coupling
Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase cerebral blood flow (CBF). This process has been termed ...
متن کاملElectrophysiological characteristics of hippocampal CA1 neurons after spreading depression-triggered epileptic activity in brain slices
Introduction: A close link between spreading depression (SD) and several neurological diseases such as epilepsy could be demonstrated in many experimental studies. Epilepsy is among the most common brain disorders. Despite a large number of investigations, its mechanisms have not been yet well elucidated. Hippocampus is one of the important structures involved in seizures. The aim of this st...
متن کاملActivity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves.
In the corpus callosum, astrocytic calcium waves propagate via a mechanism involving ATP-release but not gap junctional coupling. In the present study, we report for the neocortex that calcium wave propagation depends on functional astrocytic gap junctions but is still accompanied by ATP-release. In acute slices obtained from the neocortex of mice deficient for astrocytic expression of connexin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 30 شماره
صفحات -
تاریخ انتشار 2003